Friday, April 7, 2017

146. LRU Cache

五刷 06/2022

Version #1 Doubly Linked List + HashMap
Runtime: 96 ms, faster than 30.82% of Java online submissions for LRU Cache.
Memory Usage: 125.7 MB, less than 47.57% of Java online submissions for LRU Cache.
class LRUCache {
    class ListNode {
        public ListNode prev, next;
        public int key;
        public int val;
        public ListNode(int key, int val) {
            this.key = key;
            this.val = val;
        }
    }
    private Map<Integer, ListNode> nodes;
    private ListNode head, tail;
    private int cap;
    // We need a doubly-linked list to serve as the cache
    // In order to make get/put O(1) we need hashmap to keep track of the nodes in the list
    private void addFirst(ListNode node) {
        // head -> head.next
        // head -> node -> head.next
        ListNode nextNode = head.next;
        head.next = node;
        node.prev = head;
        node.next = nextNode;
        nextNode.prev = node;
    }
    
    private ListNode removeLast() {
        // tail.prev.prev -> tail.prev -> tail
        // tail.prev.prev -> tail
        ListNode prevNode = tail.prev;
        if (prevNode == head) {
            return null;
        }
        prevNode.prev.next = tail;
        tail.prev = prevNode.prev;
        return prevNode;
    }
    
    private void removeNode(ListNode node) {
        ListNode prev = node.prev;
        ListNode next = node.next;
        prev.next = next;
        next.prev = prev;
    }
    
    public LRUCache(int capacity) {
        nodes = new HashMap<>();
        head = new ListNode(-1, -1);
        tail = new ListNode(-1, -1);
        head.next = tail;
        tail.prev = head;
        cap = capacity;
    }
    
    public int get(int key) {
        if (!nodes.containsKey(key)) {
            return -1;
        }
        ListNode node = nodes.get(key);
        if (node.prev != head) {
            removeNode(node);
            addFirst(node);
        }
        return node.val;
    }
    
    public void put(int key, int value) {
        if (nodes.containsKey(key)) {
            ListNode node = nodes.get(key);
            node.val = value;
            if (node.prev != null) {
                removeNode(node);
                addFirst(node);
            }
            return;
        }
        ListNode node = new ListNode(key, value);
        nodes.put(key, node);
        addFirst(node);
        if (nodes.size() > cap) {
            ListNode last = removeLast();
            nodes.remove(last.key);
        }
    }
}

/**
 * Your LRUCache object will be instantiated and called as such:
 * LRUCache obj = new LRUCache(capacity);
 * int param_1 = obj.get(key);
 * obj.put(key,value);
 */

四刷
这次做的有点不一样,一开始没有考虑remove的时候需要把key从map里面移除
写到最后的时候不得不加了一个反向的keyMap把ListNode和key联系在一起
看了以前的写法,可以直接在ListNode里面加一个key的field
anyway这次只写了20分钟,还是挺快的

 45.21 %
class LRUCache {
    class ListNode {
        ListNode prev, next;
        int val;
        public ListNode(int val) {
            this.val = val;
        }
    }
    // doubly linked list

    private Map<Integer, ListNode> map;
    private Map<ListNode, Integer> keyMap;
    private ListNode head, tail;
    private int capacity;
    private int size;
    public LRUCache(int capacity) {
        map = new HashMap<>();
        keyMap = new HashMap<>();
        this.capacity = capacity;
        this.size = 0;
        head = new ListNode(0);
        tail = new ListNode(0);
        head.next = tail;
        tail.prev = head;
    }
   
    public int get(int key) {
        // check if key exist -> remove list node from original node, intsert at tail
        if (!map.containsKey(key)) {
            return -1;
        }
        ListNode curr = map.get(key);
        if (curr.next != tail) {
            removeNode(curr);
            appendNode(curr);
        }
        return curr.val;
    }
   
    public void put(int key, int value) {
        // check if key exist -> remove
        // insert at tail
        // check size -> check if we need to remove the 1st node or not
        ListNode curr = null;
        if (map.containsKey(key)) {
            curr = map.get(key);
            if (curr.next != tail) {
                removeNode(curr);
                appendNode(curr);
            }
            curr.val = value;
        } else {
            curr = new ListNode(value);
            map.put(key, curr);
            keyMap.put(curr, key);
            appendNode(curr);
            size++;
            if (size > capacity) {
                ListNode outdatedNode = head.next;
                removeNode(head.next);
                map.remove(keyMap.get(outdatedNode));
                keyMap.remove(outdatedNode);
            }
        }
    }
   
    private void removeNode(ListNode node) {
        node.prev.next = node.next;
        node.next.prev = node.prev;
    }
   
    private void appendNode(ListNode node) {
        ListNode prev = tail.prev;
        prev.next = node;
        node.prev = prev;
        node.next = tail;
        tail.prev = node;
    }
}


[3RD TRY]
Think about thread safety...
I just added synchronized key word to get and put
Should try ReentrantLock in the future

 60.20 %
import java.util.concurrent.ConcurrentHashMap;

public class LRUCache {
private LinkedHashMap linkedHashMap;
public LRUCache(int capacity) {
this.linkedHashMap = new LinkedHashMap(capacity);
}

class LinkedHashMap {
class Node {
private Node prev;
private Node next;
private int key;
private int value;

public Node(int key, int value) {
this.key = key;
this.value = value;
}
}

private int capacity;
private Map<Integer, Node> map;
private Node head;
private Node tail;

private int size;

public LinkedHashMap(int capacity) {
this.capacity = capacity;
map = new ConcurrentHashMap<>();
head = new Node(0, 0);
tail = new Node(0, 0);
head.next = tail;
tail.prev = head;
size = 0;
}

public synchronized int get(int key) {
if (!map.containsKey(key)) {
return -1;
}
Node curr = map.get(key);
// remove node
remove(curr);
// insert after head
insertHead(curr);
return curr.value;
}

private void remove(Node node) {
node.prev.next = node.next;
node.next.prev = node.prev;
}

private void insertHead(Node node) {
Node nextNode = head.next;
head.next = node;
node.prev = head;
node.next = nextNode;
nextNode.prev = node;
}

public synchronized void put(int key, int value) {
Node curr = null;
if (map.containsKey(key)) {
// update value & position
curr = map.get(key);
curr.value = value;
remove(curr);
} else {
curr = new Node(key, value);
map.put(key, curr);
size++;
}
if (size > capacity) {
Node lastNode = tail.prev;
map.remove(lastNode.key);
remove(lastNode);
size--;
}
insertHead(curr);
}
}

public int get(int key) {
return linkedHashMap.get(key);
}

public void put(int key, int value) {
linkedHashMap.put(key, value);
}
}

[1ST TRY]
LintCode
不是很难 关键是doubly linked list在head 和tail 都应该加dummy node
会比不加简洁一万倍
一个是get之后也要update位置
一个是尽管set到同样key的值,value也有可能被改变, 所以也要update位置

public class Solution {

    private class Node {
        public Node prev, next;
        public int key, value;
        public Node(int key, int value) {
            this.key = key;
            this.value = value;
            this.prev = null;
            this.next = null;
        }
    }
    private Node head, tail;
    private Map<Integer, Node> hash;
    private int cap;
    // @param capacity, an integer
    public Solution(int capacity) {
        // write your code here
        this.head = new Node(0, 0);
        this.tail = new Node(0, 0);
        head.next = tail;
        tail.prev = head;
        this.hash = new HashMap<Integer, Node>();
        this.cap = capacity;
    }

    // @return an integer
    public int get(int key) {
        // write your code here
        if (!hash.containsKey(key)) return -1;
        Node curr = hash.get(key);
        moveToTail(curr);
        return curr.value;
    }
    private void moveToTail(Node node) {
        //delete node from the current position
        node.prev.next = node.next;
        node.next.prev = node.prev;
        //insert node before tail
        tail.prev.next = node;
        node.prev = tail.prev;
        tail.prev = node;
        node.next = tail;
    }

    // @param key, an integer
    // @param value, an integer
    // @return nothing
    public void set(int key, int value) {
   
        // write your code here
        if (hash.containsKey(key)) {
            Node curr = hash.get(key);
            curr.value = value;
            moveToTail(curr);
            return;
        }
        if (hash.size() >= cap) {
            hash.remove(head.next.key);
            head.next = head.next.next;
            head.next.prev = head;
        }
        Node newNode = new Node(key, value);
        hash.put(key, newNode);
        tail.prev.next = newNode;
        newNode.prev = tail.prev;
        tail.prev = newNode;
        newNode.next = tail;
    }
}


二刷 LeetCode
35.23 %

对doublyLinkedList的处理完全用函数了 感觉还是比较简洁的
写了1个typo Initialize时候tail.prev = head
2个bug 问题出在 每一个node不光要记住它的value 同时也要记住它的key 因为从head remove的时候,需要根据head.next找到hashmap里面的key并删除 所以node要有key和value


class doublyListNode {
    public doublyListNode prev, next;
    public int key, val;
    public doublyListNode(int key, int val) {
        this.key = key;
        this.val = val;
        prev = null;
        next = null;
    }
}
public class LRUCache {
    private doublyListNode head;
    private doublyListNode tail;
    private int capacity;
    private Map<Integer, doublyListNode> map;

    public LRUCache(int capacity) {
        head = new doublyListNode(-1, -1);
        tail = new doublyListNode(-1, -1);
        this.capacity = capacity;
        map = new HashMap<Integer, doublyListNode>();
        head.next = tail;
        tail.prev = head;
    }

    public int get(int key) {
        if (!map.containsKey(key)) return -1;
        doublyListNode curr = map.get(key);
        moveToTail(curr);
        return curr.val;
    }

    public void put(int key, int value) {
        doublyListNode curr;
        if (map.containsKey(key)) {
            curr = map.get(key);
            curr.val = value;
            moveToTail(curr);
        } else {
            if (capacity == 0) {
                //System.out.println(head.next.key);
                map.remove(head.next.key);
                deleteFromHead();
                capacity++;
            }
            curr = new doublyListNode(key, value);
            map.put(key, curr);
            addToTail(curr);
            capacity--;
        }
    }
    private void addToTail(doublyListNode node) {
        tail.prev.next = node;
        node.prev = tail.prev;
        node.next = tail;
        tail.prev = node;
    }

    private void deleteFromHead() {
        //Empty list
        if (head == tail) return;
        //Otherwise there are at least 3 nodes
        head.next.next.prev = head;
        head.next = head.next.next;
    }
    private void moveToTail(doublyListNode node) {
        //delete from list
        node.prev.next = node.next;
        node.next.prev = node.prev;
        //addToTail
        addToTail(node);
    }
}

/**
 * Your LRUCache object will be instantiated and called as such:
 * LRUCache obj = new LRUCache(capacity);
 * int param_1 = obj.get(key);
 * obj.put(key,value);
 */

No comments:

Post a Comment