Version #1 BFS
Using a temporary max variable to keep track of the maximum value of each level
71.59%
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public List<Integer> largestValues(TreeNode root) {
List<Integer> result = new ArrayList<>();
if (root == null) return result;
Queue<TreeNode> que = new LinkedList<>();
que.add(root);
int size, max;
TreeNode curr = null;
while (!que.isEmpty()) {
size = que.size();
max = Integer.MIN_VALUE;
for (int i = 0; i < size; i++) {
curr = que.poll();
max = Math.max(curr.val, max);
if (curr.left != null) que.offer(curr.left);
if (curr.right != null) que.offer(curr.right);
}
result.add(max);
}
return result;
}
}
Version #2 DFS
95.56%
public class Solution {
public List<Integer> largestValues(TreeNode root) {
List<Integer> result = new ArrayList<>();
if (root == null) return result;
dfs(root, 0, result);
return result;
}
private void dfs(TreeNode root, int level, List<Integer> result) {
//Base case
if (root == null) return;
//1st time to touch this level
if (level == result.size()) {
result.add(root.val);
//The level maximum needs to be updated
} else if (root.val > result.get(level)) {
result.set(level, root.val);
}
//Do recursion no matter its children are null or not
//Base case takes care of null
dfs(root.left, level + 1, result);
dfs(root.right, level + 1, result);
}
}
No comments:
Post a Comment